dcmstack Documentation
Release 0.6

Brendan Moloney

Sep 24, 2022

CONTENTS

Introduction 3
1.1 Dependencies o i i e e e e e e e e e e e e e 3
1.2 Installation e e e e e e e e e 3
1.3 BasicConversion e e e e e e e e e e e e e e 3
1.4 BasicMetaDataUsage i vt i e e e e e e e e e e e e 4
CLI Tutorial 5
2.1 Advanced Conversion i i e e e e e e e e e e e e e e e 5
2.2 Working with Extended Nifti Files 6
Python Tutorial 9
3.1 Creating DicomStack Objects e 9
3.2 Using DicomStack Objects i i i e e e e e e e e e e 10
3.3 Creating NiftiWrapper Objects o o e e e e e e 10
3.4 Using NiftiWrapper Objects e 11
3.5 Accessing the the DemMetaExtension Lo 12
DcmMeta Extension 13
4.1 EXtraction e e e e e e e e e e 13
42 Summarizing e e e e e e e e e e e 13
43 Encoding e e e 14
4.4 Example e e e e e e e e e e e e e 14
API Documentation 23
5.1 demstack Package e e e e e 23
Indices and tables 25

dcmstack Documentation, Release 0.6

Contents:

CONTENTS 1

dcmstack Documentation, Release 0.6

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The demstack software allows series of DICOM images to be stacked into multi-dimensional arrays. These arrays can
be written out as Nifti files with an optional header extension (the DcmMeta extension) containing a summary of all
the meta data from the source DICOM files.

1.1 Dependencies

Either Python 2.6 or 2.7 is required. With Python 2.6 it is not possible to maintain the order of meta data keys when
reading back the JSON.

DcmStack requires the packages pydicom (>=0.9.7) and NiBabel.

1.2 Installation

Download the latest release from github, and run easy_install on the downloaded .zip file.

1.3 Basic Conversion

The software consists of the python package (dcmstack) with two command line interfaces (demstack and nitool).

It is recommended that you sort your DICOM data into directories (at least per study, but perferably by series) before
conversion.

To convert directories of DICOM data from the command line you generally just need to pass the directories to dcm-
stack:

$ dcmstack -v 032-MPRAGEAXTI900Pre/

Processing source directory 032-MPRAGEAXTI900Pre/

Found 64 source files in the directory

Created 1 stacks of DICOM images

Writing out stack to path 032-MPRAGEAXTI900Pre/032-MPRAGE_AX_TI900_Pre.nii.gz

Here we use the verbose flab (-v) to show what is going on behind the scenes. To embed the DcmMeta header extension
we need to use the —embed option. For more information see CLI Tutorial.

Performing the conversion from Python code requires a few extra steps but is also much more flexible:

http://code.google.com/p/pydicom/
http://nipy.sourceforge.net/nibabel/
https://github.com/moloney/dcmstack/tags

dcmstack Documentation, Release 0.6

>>> import dcmstack

>>> from glob import glob

>>> src_dcms = glob('032-MPRAGEAXTI900Pre/*.dcm")
>>> stacks = dcmstack.parse_and_stack(src_dcms)
>>> stack = stacks.values[0]

>>> nii = stack.to_nifti()

>>> nii.to_filename('output.nii.gz')

The parse_and_stack function has many optional arguments that closely match the command line options for demstack.
To embed the DcmMeta extension pass embed_meta=True to the fo_nifti method. For more information see Python
Tutorial.

1.4 Basic Meta Data Usage

To work with Nifti files containing the embedded DcmMeta extension on the command line, use the nifool command.
The nitool command has several sub commands.

$ nitool lookup InversionTime 032-MPRAGE_AX_TI900_Pre.nii.gz
900.0

Here we use the lookup sub command to lookup up the value for ‘InversionTime’. For more information about using
nitool see CLI Tutorial.

To work with the extended Nifti files from Python, use the NiftiWrapper class.

>>> from dcmstack import dcmmeta

>>> nii_wrp = dcmmeta.NiftiWrapper.from_filename('032-MPRAGE_AX_TI900_Pre.nii.gz")
>>> nii_wrp.get_meta('InversionTime')

900.0

For more information on using the NiftiWrapper class see Python Tutorial.

For information on the DcmMeta extension see DcmMeta Extension.

4 Chapter 1. Introduction

CHAPTER
TWO

CLI TUTORIAL

The software has two command line interfaces: dcmstack and nitool. The dcmstack command is used for converting
DICOM data to Nifti files with the optional DcmMeta extension. The nifool command is used to work with these
exteneded Nifti files.

2.1 Advanced Conversion

While the demstack command has many options, the defaults should do the right thing in most scenarios. To see a
complete list of the command line options (with brief descriptions) use the -/ option.

2.1.1 Embedding Meta Data

If the —embed option is used, all of the meta data in the source DICOM files will be extracted and summarized into
a DcmMeta extension, which is then embedded into the Nifti header. The meta data keys are the keywords from the
DICOM standard. For details on the DcmMeta extension see DcmMeta Extension.

The meta data is filtered using regular expressions to reduce the chance of including PHI (Private Health Information).
There are two types of regular expressions used for filtering: ‘exclude’ and ‘include’ expressions. Any meta data where
the key matches an exclude expression will be excluded, unless it also matches an include expression. That is to say
that the include expressions override the exclude expressions.

To see the list of the default regular expressions use the —default-regexes option. To add an additional exclude expression
use —exclude-regex (-e) option and to add an additional include expression use the —include-regex (-i) option.

By default, any private DICOM elements are ignored unless there is a “translator” for that element. To see a list of
available translators use the —list-translators (-I) option. To disable a specific translator use the —disable-translator
option. To include private elements that don’t have a translator use the —extract-private option.

IT IS YOUR RESPONSABILITY TO KNOW IF THERE IS PRIVATE HEALTH INFORMATION IN THE
RESULTING FILE AND TREAT SUCH FILES APPROPRIATELY.

2.1.2 Output Names and Grouping

All DICOM files from the same series will grouped into a stack together. The output file name is determined by a
Python format string that is formatted with the meta data. This can be specified with the —output-format option. By
default the program will try to figure out an appropriate format string for the available meta data. Generally this will
be the ‘SeriesNumber’ followed by the ‘ProtocolName’ or ‘SeriesDescription’ (or just the word “series”).

dcmstack Documentation, Release 0.6

2.1.3 Ordering Time and Vector Dimensions

In addition to the three spatial dimensions, Nifti images can have time and (less commonly) vector dimensions. By
default, the software will try to guess the appropriate meta data key for sorting the time dimension. If you would like
to specify the meta data key, or stack along the vector dimension, you can do so with the —time-var (-t) and —vector-var
(-v) options. Both options take a meta data key as an argument.

If there isn’t an attribute that can be used with a simple ascending order to sort along these dimensions, the —time-
order or —vector-order options can be used. The argument to the option should be a text file with one value per line
corresponding to the sorted order to use.

2.1.4 Creating Uncompressed Niftis

By default the output Nifti files will be compressed, and thus have the extension ‘.nii.gz’. Almost every program that
can read Nifti files will still read them if they are compressed. To override this behavior you can use the —output-ext
option.

2.1.5 Handling Bad Data

Valid DICOM files should have a specific preamble (an initial byte pattern) to identify them as a DICOM file. It is not
uncommon to come across files that are missing this preamble but are otherwise valid (generally due to bad software).
You can force decmstack to try to read these files using the —force-read option.

With some data sets (generally EPI) slices can be missing their pixel data due to an error in the reconstruction. Using
the —allow-dummies option will allow these files and fill the corresponding slice with the maximum possible value (i.e.
65535 for uint16).

2.1.6 Voxel Order

While the affine transform stored in the Nifti allows a mapping from voxel indices to patient space, some programs do
not make use of the affine information. To provide a similar orientation in these programs we reorder voxels in the same
manner as dem2nii. This results in the positive row, column, and slice directions pointing toward the left, anterior, and
superior (LAS) patient directions. This can be overridden with the —voxel-order option.

2.2 Working with Extended Nifti Files

The nitool command can be used to perform various tasks with the extended Nifti files (that is files with the the
DcmMeta extension embedded). The nitool command exposes functionality through a number of sub commands. To
see a list of sub commands with brief explanations use the -/ option. To see detailed help for a specific subcommand
use:

$ nitool <sub_command> -h

6 Chapter 2. CLI Tutorial

dcmstack Documentation, Release 0.6

2.2.1 Looking Up Meta Data

To lookup meta data in an extended Nifti, use the lookup sub command. If you don’t specify a voxel index (using
—index) then only constant meta data will be considered.

$ nitool lookup InversionTime 032-MPRAGE_AX_TI900_Pre.nii.gz

900.0

$ nitool lookup InstanceNumber 032-MPRAGE_AX_TI900_Pre.nii.gz

$ nitool lookup InstanceNumber --index 0,0,0 032-MPRAGE_AX_TI900_Pre.nii.gz
1

$ nitool lookup InstanceNumber --index 0,0,1 032-MPRAGE_AX_TI900_Pre.nii.gz
2

In the above example ‘InversionTime’ is contant across the Nifti and so an index is not required. The ‘InstanceNumber’
is not constant (it varies over slices) and thus only returns a result if an index is provided.

2.2.2 Merging and Splitting

To merge or split extended Nifti files use the merge and split sub commands. This will automatically create appropriate
DcmMeta extensions for the output Nifti file(s). Both sub commands take a —dimension (-d) option to specify the index
(zero based) of the dimension to split or merge along.

If the dimension is not specified to the spl/it command, it will use the last dimension (vector, time, or slice). By default
each output will have the same name as the input only with the index prepended (zero padded to three spaces). A format
string can be passed with the option —output-format (-o0) to override this behavior.

If the dimension is not specified for the merge command, it will use the last singular or missing dimension (slice, time,
or vector). By default the inputs will be merged in the order they are provided on the command line. To instead sort
the inputs using some meta data key use the —sort (-s) option.

2.2.3 Dumping and Embedding

The DcmMeta extension can be dumped using the dump sub command. If no destination path is given the result will
print to stdout. A DcmMeta extension can be embedded into a Nifti file using the embed sub command. If no input
file is given it will be read from stdin. For details about the DcmMeta extension see DcmMeta Extension.

2.2.4 Injecting Meta Data

If you want to inject some new meta data into the header extension you can use the inject command. You need to specify
the meta data classification, key, and values. For example, to set a globally constant element with the key ‘PatientID’
and the value ‘Subject_001":

$ nitool inject 032-MPRAGE_AX_TI900_Pre.nii.gz global const PatientID Subject_001

2.2. Working with Extended Nifti Files 7

dcmstack Documentation, Release 0.6

8 Chapter 2. CLI Tutorial

CHAPTER
THREE

PYTHON TUTORIAL

This is a brief overview of how to use the demstack Python package. For details refer to API Documentation.

3.1 Creating DicomStack Objects

If you have an aquisition that you would like to turn into a single DicomStack object then you may want to do this
directly.

>>> import dcmstack, dicom
>>> from glob import glob
>>> src_paths = glob('032-MPRAGEAXTI900Pre/*.dcm")
>>> my_stack = dcmstack.DicomStack()
>>> for src_path in src_paths:
src_dcm = dicom.read_file(src_path)
my_stack.add_dcm(src_dcm)

If you are unsure how many stacks you want from a collection of DICOM data sets then you should use the
parse_and_stack function. This will group together data sets from the same DICOM series.

>>> import dcmstack

>>> from glob import glob

>>> src_paths = glob('dicom_data/*.dcm")

>>> stacks = dcmstack.parse_and_stack(src_paths)

Any keyword arguments for the DicomStack constructor can also be passed to parse_and_stack.

3.1.1 Specifying Time and Vector Order

By default, if there is more than one 3D volume in the stack the software will try to guess the meta key to sort the fourth
(time) dimension. To specify the meta data key for the fourth dimension or stack along the fifth (vector) dimension,
use the time_order and vector_order arguments to the DicomStack constructor.

dcmstack Documentation, Release 0.6

3.1.2 Grouping Datasets

The parse_and_stack function groups data sets using a tuple of meta data keys provided as the argument group_by.
The default values should group datasets from the same series into the same stack. The result is a dictionary where the
keys are the matching tuples of meta data values, and the values are the are the corresponding stacks.

3.2 Using DicomStack Objects

Once you have created your DicomStack objects you will typically want to get the array of voxel data, get the affine
transform, or create a NiftilImage.

>>> stack_data = my_stack.get_data()
>>> stack_affine = my_stack.get_affine()
>>> nii = my_stack.to_nifti()

3.2.1 Embedding Meta Data

The meta data from the source DICOM data sets can be summarized into a DcmMetaExtension which is embeded into
the Nifti header. To do this you can either pass True for the embed_meta parameter to DicomStack.to_nifti or you can
immediately get a NiftiWrapper with DicomStack.to_nifti_wrapper.

By default the meta data is filtered to reduce the chance of including private health information. This filtering can be
controlled with the meta_filter parameter to the DicomStack constructor.

IT IS YOUR RESPONSABILITY TO KNOW IF THERE IS PRIVATE HEALTH INFORMATION IN THE
RESULTING FILE AND TREAT SUCH FILES APPROPRIATELY.

3.3 Creating NiftiWrapper Objects

The NiftiWrapper class can be used to work with extended Nifti files. It wraps a NiftilImage from the nibabel package.
As mentioned above, these can be created directly from a DicomStack.

>>> import dcmstack, dicom
>>> from glob import glob
>>> src_paths = glob('032-MPRAGEAXTI900Pre/*.dcm')
>>> my_stack = dcmstack.DicomStack()
>>> for src_path in src_paths:
src_dcm = dicom.read_file(src_path)
my_stack.add_dcm(src_dcm)

>>> nii_wrp = my_stack.to_nifti_wrapper()
>>> nii_wrp.get_meta('InversionTime')
900.0

They can also be created by passing a NiftilImage to the NiftiWrapper constructor or by passing the path to a Nifti file
to NiftiWrapper.from_filename.

10 Chapter 3. Python Tutorial

dcmstack Documentation, Release 0.6

3.4 Using NiftiWrapper Objects

The NiftiWrapper objects have attribute nii_img pointing to the NiftilImage being wrapped and the attribute meta_ext
pointing to the DemMetaExtension. There are also a number of methods for working with the image data and meta
data together. For example merging or splitting the data set along the time axis.

3.4.1 Looking Up Meta Data

Meta data that is constant can be accessed with dict-style lookups. The more general access method is get_meta which
can optionally take an index into the voxel array in order to provide access to varying meta data.

>>> nii_wrp = NiftiWrapper.from_filename('032-MPRAGEAXTI900Pre.nii.gz")
>>> nii_wrp['InversionTime']
900.0
>>> nii_wrp.get_meta('InversionTime')
900.0
>>> nii_wrp['InstanceNumber']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "build/bdist.linux-x86_64/egg/dcmstack/dcmmeta.py", line 1026, in __getitem__
KeyError: 'InstanceNumber'
>>> nii_wrp.get_meta('InstanceNumber')
>>> nii_wrp.get_meta('InstanceNumber', index=(0,0,0))
1
>>> nii_wrp.get_meta('InstanceNumber', index=(0,0,1))
2

3.4.2 Merging and Splitting Data Sets

We can create a NiftiWrapper by merging a sequence of NiftiWrapper objects using the class method from_sequence.
Conversely, we can split a NiftiWrapper into a sequence if NiftiWrapper objects using the method split.

>>> from dcmstack.dcmmeta import NiftiWrapper

>>> nwl = NiftiWrapper.from_filename('imgl.nii.gz")
>>> nw2 = NiftiWrapper.from_filename('img2.nii.gz")
>>> print nwl.nii_img.get_shape()

(384, 512, 60)

>>> print nw2.nii_img.get_shape()

(384, 512, 60)

>>> print nwl.get_meta('EchoTime")

11.0

>>> print nw2.get_meta('EchoTime")

87.0

>>> merged = NiftiWrapper.from_sequence([nwl, nw2])
>>> print merged.nii_img.get_shape()

(384, 512, 60, 2)

>>> print merged.get_meta('EchoTime', index=(0,0,0,0)
11.0

>>> print merged.get_meta('EchoTime', index=(0,0,0,1)
87.0

>>> splits = list(merge.split())

(continues on next page)

3.4. Using NiftiWrapper Objects 11

dcmstack Documentation, Release 0.6

(continued from previous page)

>>> print splits[0].nii_img.get_shape()
(384, 512, 60)

>>> print splits[1].nii_img.get_shape()
(384, 512, 60)

>>> print splits[0].get_meta('EchoTime")
11.0

>>> print splits[1].get_meta('EchoTime")
87.0

3.5 Accessing the the DcmMetaExtension

It is generally recommended that meta data is accessed through the NiftiWrapper class since it can do some checks
between the meta data and the image data. For example, it will make sure the dimensions and slice direction have not
changed before using varying meta data.

However certain actions are much easier when accessing the meta data extension directly.

>>> from dcmstack.dcmmeta import NiftiWrapper

>>> nwl = NiftiWrapper.from_filename('img.nii.gz")
>>> nw.meta_ext.shape

>>> (384, 512, 60, 2)

>>> print nw.meta_ext.get_values('EchoTime")

[11.0, 87.0]

>>> print nw.meta_ext.get_classification('EchoTime")
("time', 'samples')

12 Chapter 3. Python Tutorial

CHAPTER
FOUR

DCMMETA EXTENSION

The DcmMeta extension is a complete but concise representation of the meta data in a series of source DICOM files.
The primary goals are:

1. Preserve as much meta data as possible

2. Make the meta data more accessible

3. Make the meta data human readable and editable

4.1 Extraction

The meta data is extracted from each DICOM input into a set of key/value pairs. Each non-private DICOM element
uses the standard DICOM keyword as its key. Values are generally left unchanged (except for ‘DS’ and ‘IS’ value
representations which are converted from strings to float and integer numbers respectively).

Translators are used to convert private elements into sets of key/value pairs. These are then added to the standard
DICOM meta data with the translator name (followed by a dot) prepended to each of the keys it generates.

Private DICOM elements without translators are ignored by default, but this can be overridden. Any element with a
value representation of ‘OW’ or ‘OB’ is ignored if it contains non-ASCII characters.

4.2 Summarizing

The meta data from individual input files is summarized over the dimensions of the Nifti file. Most of the meta data will
be constant across all of the input files. Other meta data will be constant across each time/vector sample, or repeating
for the slices in each time/vector sample. We summarize the meta data into one or more dictionaries as follows.

There will always be a dictionary ‘global’ with two nested dictionaries inside, ‘const’ and ‘slices’. The meta data that
is constant across all input files get stored under the ‘const’ dictionary. The meta data that varies across all slices will
be stored under slices, where each value is a list of values (one for each slice).

If there is a time dimension there will also be ‘time’ dictionary containing two nested dictionaries, ‘samples’ and ‘slices’.
Meta data that is constant across a time sample will be stored in the ‘samples’ dictionary with each being value a list
of values (one for each time sample). Values that repeat across the slices in a time sample (a single volume) will be
stored in the ‘slices’ dictionary with each value being a list of values (one for each slice in a time point).

If there is a vector dimension there will be a ‘vector’ dictionary, handled in the same manner as the ‘time’ dictionary.

13

dcmstack Documentation, Release 0.6

4.3 Encoding

The dictionaries of summarized meta data are encoded with JSON. A small amount of “meta meta” data that describes
the DcmMeta extension is also included. This includes the affine (‘dcmmeta_affine’), shape (‘dcmmeta_shape’), any
reorientation transform (‘dcmmeta_reorient_transform’), and the slice dimension (‘dcmmeta_slice_dim’) of the data
described by the meta data. A version number for the DcmMeta extension (‘dcmmeta_version’) is also included.

The affine, shape, and slice dimension are used to determine if varying meta data is still valid. For example, if the image
affine no longer matches the meta data affine (i.e. the image has been coregistered) then we cannot directly match the
per-slice meta data values to slices of the data array.

The reorientation transform can be used to update directional meta data to match the image orientation. This transform
encodes any reordering of the voxel data that occured during conversion. If the image affine does not match the meta
data affine, then an additional transformation needs to be done after applying the reorientation transform (from the meta
data space to the image space).

4.4 Example

Below is an example DcmMeta extension created from a data set with two slices and three time points (each with a

different EchoTime). The meta data has been abridged (the “...” line) for clarity.
{
"global": {
"const": {

"SpecificCharacterSet": "ISO_IR 100",
"ImageType": [

"ORIGINAL",

"PRIMARY",

"

"“ND"
1,
"StudyTime": 69244.484,
"SeriesTime": 71405.562,
"Modality": "MR",
"Manufacturer": "SIEMENS",
"SeriesDescription": "2D 16Echo qT2",

"ManufacturerModelName": "TrioTim",
"ScanningSequence": "SE",
"SequenceVariant": "SP",

"ScanOptions": "SAT1",
"MRAcquisitionType": "2D",
"SequenceName": "se2d16",
"AngioFlag": "N",
"SliceThickness": 7.0,
"RepetitionTime": 3000.0,
"NumberOfAverages": 1.0,
"ImagingFrequency": 123.250392,
"ImagedNucleus": "1H",
"MagneticFieldStrength": 3.0,
"SpacingBetweenSlices": 10.5,
"NumberOfPhaseEncodingSteps": 96,
"EchoTrainLength": 1,

(continues on next page)

14 Chapter 4. DcmMeta Extension

dcmstack Documentation, Release 0.6

(continued from previous page)

"PercentSampling"”: 50.0,
"PercentPhaseFieldOfView": 100.0,
"PixelBandwidth": 420.0,

"SoftwareVersions": "syngo MR B17",
"ProtocolName": "2D 16Echo qT2",
"TransmitCoilName": "TxRx_Head",
"AcquisitionMatrix": [

0,

192,

96,

0
1,
"InPlanePhaseEncodingDirection": "ROW",

"FlipAngle": 180.0,
"VariableFlipAngleFlag": "N",
"SAR": 0.11299714843984,
"dBdt": 0.0,
"StudyID": "1",
"SeriesNumber": 3,
"AcquisitionNumber": 1,
"ImageOrientationPatient": [

1.0,

-2.051034e-10,

0.0,

2.051034e-10,

1.0,

1.98754e-11
1,
"SamplesPerPixel": 1,
"PhotometricInterpretation": "MONOCHROME2",
"Rows": 192,
"Columns": 192,
"PixelSpacing": [

0.66666668653488,

0.66666668653488
]!
"BitsAllocated": 16,
"BitsStored": 12,
"HighBit": 11,
"PixelRepresentation": 0,
"SmallestImagePixelValue": O,
"WindowCenterWidthExplanation": "Algol",
"PerformedProcedureStepStartTime": 69244.546,
"Csalmage.EcholLinePosition": 48,
"Csalmage.UsedChannelMask": 1,
"Csalmage.MeasuredFourierLines": 0,
"CsaImage.SequenceMask": 134217728,
"CsaImage.RFSWDDataType": "predicted",
"Csalmage.RealDwellTime": 6200,
"CsaImage.ImaCoilString": "C:HE",
"CsaImage.EchoColumnPosition": 96,
"CsaImage.PhaseEncodingDirectionPositive": 1,

(continues on next page)

4.4. Example 15

dcmstack Documentation, Release 0.6

(continued from previous page)

"CsaImage.GSWDDataType": "predicted",
"Csalmage.SliceMeasurementDuration": 286145.0,
"Csalmage.MultistepIndex": O,
"CsaImage.ImaRelTablePosition": [

0,

0,

0
1,
"CsaIlmage.NonPlanarImage": O,
"CsaImage.EchoPartitionPosition": 32,
"Csalmage.AcquisitionMatrixText": "96%192s",
"Csalmage.ImaAbsTablePosition": [

0,

0,

-1630
1,

"CsaSeries.TalesReferencePower": 334.36266914,
"CsaSeries.Operation_mode_flag": 2,
"CsaSeries.dBdt_thresh": 0.0,
"CsaSeries.ProtocolChangeHistory": 0,
"CsaSeries.GradientDelayTime": [
12.0,
14.0,
10.0
1,
"CsaSeries.SARMostCriticalAspect": [
3.2,
1.84627729,
0.0
1,
"CsaSeries.Blrms": [
7.07106781,
1.59132133
1,
"CsaSeries.RelTablePosition": [
®l
0,
0
1,
"CsaSeries.NumberOfPrescans": 0,
"CsaSeries.dBdt_limit": 0.0,
"CsaSeries.Stim_lim": [
45.73709869,
27.64929962,
31.94370079
1,

"CsaSeries.
"CsaSeries
"CsaSeries
"CsaSeries
"CsaSeries
"CsaSeries.

.BlrmsSupervision":
.ReadoutGradientAmplitude": 0.0,
.MrProtocolVersion": 21710006,
.RFSWDMostCriticalAspect": "Head",

PatReinPattern": "1;FFS;45.36;10.87;3;0;2;866892320",
"NO",

SequenceFileOwner": "SIEMENS",

(continues on next page)

16

Chapter 4. DcmMeta Extension

dcmstack Documentation, Release 0.6

(continued from previous page)

"CsaSeries

"CsaSeries
"CsaSeries

"CsaSeries
"CsaSeries
"CsaSeries
"CsaSeries

"CsaSeries

"CsaSeries

"CsaSeries

"CsaSeries

"CsaSeries
255,
196,
238,
238,
238,
238,
238,
238,
238,
238,
238

1,

"CsaSeries.
.CoilString": "C:HE",
.CoilForGradient": "void",
.TablePositionOrigin": [

"CsaSeries
"CsaSeries
"CsaSeries
0,
0,
-1630
1,

"CsaSeries

(=]

(== I — R — R — R — R — R — R — I — A — AN — I — I — =

.GradientMode": "Fast",
"CsaSeries.
.FlowCompensation": "No",
.TransmitterCalibration": 128.29875,
"CsaSeries.
.AbsTablePosition": -1630,
.Readout0S": 2.0,
.dBdt_max": 0.0,
.RFSWDOperationMode": O,
"CsaSeries.
.PhaseGradientAmplitude": 0.0,
.RfWatchdogMask": O,
.CoilForGradient2": "AS092",
.Stim_mon_mode": 2,

.Coilid": [

SliceArrayConcatenations": 1,

Isocentered": 0,

SelectionGradientAmplitude": 0.0,

Stim_max_ges_norm_online": 0.62600064,

.MiscSequenceParam": [

(continues on next page)

4.4. Example

17

dcmstack Documentation, Release 0.6

(continued from previous page)

b,

- e w o= W -

(= — I — R — I — R — R e R — R R A I — I — I — I — I — R — R — R — I — I — R~]

1,
"CsaSeries.LongModelName": "NUMARIS/4",
"CsaSeries.Stim_faktor": 1.0,
"CsaSeries.SW_korr_faktor": 1.0,
"CsaSeries.Sed": [

1000000.0,

156.13387238,

156.13387238
]l
"CsaSeries.PositivePCSDirections": "+LPH",
"CsaSeries.SliceResolution": 1.0,
"CsaSeries.Stim_max_online": [

0.22781265,

17.30016327,

0.5990392
1,
"CsaSeries.t_puls_max": 0.0,
"CsaSeries.MrPhoenixProtocol.ulVersion": 21710006,
"CsaSeries.MrPhoenixProtocol.tSequenceFileName": "%SiemensSeqg¥%\\se_mc",
"CsaSeries.MrPhoenixProtocol.tProtocolName": "2D 16Echo qT2",

"CsaSeries.MrPhoenixProtocol.sAsl.ulMode": 1,
"CsaSeries.MrPhoenixProtocol.ucAutoAlignInit": 1

"slices": {

"InstanceCreationTime": [
71405.671,
71405.562,
71405.671,
71405.578,

(continues on next page)

18

Chapter 4. DcmMeta Extension

dcmstack Documentation, Release 0.6

(continued from previous page)

71405.671,
71405.578

1,

"AcquisitionTime": [
71118.2425,
71116.7375,
71118.2625,
71116.7575,
71118.2825,
71116.7775

1,

"ContentTime": [
71405.671,
71405.562,
71405.671,
71405.578,
71405.671,
71405.578

1,

"InstanceNumber": [

1,
"LargestImagePixelValue":
2772,
2828,
2077,
2085,
1470,
1397
1,
"WindowCenter": [
1585.0,
1513.0,
1495.0,
1455.0,
1100.0,
1084.0
1,
"WindowWidth": [
3191.0,
3212.0,
2750.0,
2731.0,
2120.0,
2073.0
1,

"CsaImage.TimeAfterStart":

[

[

(continues on next page)

4.4. Example

19

dcmstack Documentation, Release 0.6

(continued from previous page)

1.505,
0.0,
1.525,
0.02,
1.545,
0.04

1,

"CsaImage.ICE_Dims": [
"1.1.1_1_1.1_1_4_1_1_1_1_490",
"1.1.1.1.1.1.1.1.1_1_2_1_490",
"1.2_1.1_1_1_1_4_1_1_1_1_490",
"1.2_1_1_1_1_1_1_1_1_2_1_490",
"1.3.1.1_1.1_1_4_1_1_1_1_490",
"1.3.1_1_1_1_1_1_1_1_2_1_490"

1

}
1
"time": {
"samples": {
"EchoTime": [
20.0,
40.0,
60.0
1,
"EchoNumbers": [
1,
2,
3
1
1,
"slices": {

"ImagePositionPatient": [

[
-64.000001919919,
-118.13729284881,
-33.707626344045
1,
[
-64.000001919919,
-118.13729284881,
-23.207628251394
1

1,

"SlicelLocation": [
-33.707626341697,
-23.207628249046

]!

"CsaImage.ProtocolSliceNumber": [
0,

1

1,

"CsaImage.SlicePosition_PCS": [

(continues on next page)

20 Chapter 4. DcmMeta Extension

dcmstack Documentation, Release 0.6

(continued from previous page)

[
-64.00000192,
-118.13729285,
-33.70762634
1,
[
-64.00000192,
-118.13729285,
-23.20762825
1
1
}
1
"dcmmeta_shape": [
192,
192,
2,
3
1,
"dcmmeta_affine": [
[
-0.6666666865348816,
1.3673560894655878e-10,
0.0,
64.0
1,
[
1.3673560894655878e-10,
0.6666666865348816,
0.0,
-9.196043968200684
1,
[
0.0,
-1.325026720289113e-11,
10.499998092651367,
-33.70762634277344
1,
[
0.0,
0.0,
0.0,
1.0
]
1,
"dcmmeta_reorient_transform": [
[
-0.0,
-1.0,
-0.0,
191.0
]!

(continues on next page)

4.4. Example 21

dcmstack Documentation, Release 0.6

(continued from previous page)

[
1.0,
0.0,
0.0,
0.0
1,
[
0.0,
0.0,
1.0,
0.0
1,
[
0.0,
0.0,
0.0,
1.0
]

1,
"dcmmeta_slice_dim": 2,
"dcmmeta_version": 0.6

22 Chapter 4. DcmMeta Extension

CHAPTER
FIVE

5.1 dcmstack Package

5.1.1 demstack Package
5.1.2 dcmstack Module
5.1.3 dcmmeta Module

5.1.4 extract Module

API DOCUMENTATION

23

dcmstack Documentation, Release 0.6

24 Chapter 5. APl Documentation

CHAPTER
SIX

INDICES AND TABLES

* genindex
* modindex

¢ search

25

	Introduction
	Dependencies
	Installation
	Basic Conversion
	Basic Meta Data Usage

	CLI Tutorial
	Advanced Conversion
	Embedding Meta Data
	Output Names and Grouping
	Ordering Time and Vector Dimensions
	Creating Uncompressed Niftis
	Handling Bad Data
	Voxel Order

	Working with Extended Nifti Files
	Looking Up Meta Data
	Merging and Splitting
	Dumping and Embedding
	Injecting Meta Data

	Python Tutorial
	Creating DicomStack Objects
	Specifying Time and Vector Order
	Grouping Datasets

	Using DicomStack Objects
	Embedding Meta Data

	Creating NiftiWrapper Objects
	Using NiftiWrapper Objects
	Looking Up Meta Data
	Merging and Splitting Data Sets

	Accessing the the DcmMetaExtension

	DcmMeta Extension
	Extraction
	Summarizing
	Encoding
	Example

	API Documentation
	dcmstack Package
	dcmstack Package
	dcmstack Module
	dcmmeta Module
	extract Module

	Indices and tables

